Code: IT7T2

IV B.Tech-I Semester–Regular Examinations–October 2017

SOFTWARE TESTING (INFORMATION TECHNOLOGY)

Duration: 3 hours

Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

- 1. a) Demonstrate nightmare list and when to stop testing in the consequences of bugs.
 - b) Explain model for testing.
 - c) Compare control flow graphs and flow charts.
 - d) Explain components of data flow model.
 - e) Define data flow testing.
 - f) Explain domain and explain different domain bugs.
 - g) Sketch KV-charts of 3 variables and 4 variables.
 - h) Define decision table and explain about don't care and impossible terms.
 - i) Explain the powers of a matrix.
 - j) Explain connection matrix and explain about relations.
 - k) Define graph matrix and explain out-degree and in-degree.

PART – B

Answer any <i>THREE</i> questions.	All questions carry equal
marks.	16 x 3 = 48 M

- 2. a) Explain the various software testing principles. 8 M
 - b) Discuss that software testing will ensure the quality of a developed software. 8 M
- 3. a) Discuss various flow graph elements with their notations. 8 M
 - b) Define path sensitization and write the heuristic procedure used in path sensitization. 8 M
- 4. a) Define path. What do you mean by complete, feasible and infeasible path? 8 M
 - b) Explain that domain testing can be used in both functional and structural testing. 8 M
- 5. a) Demonstrate decision table and how is a decision table useful in testing. Explain with the help of an example. 8 M
 - b) Demonstrate an anomaly can be detected. Explain different types of data flow anomalies and data flow anomaly state graphs.
 8 M

6. a) Discuss a node reduction algorithm in terms of matrix operations.	8 M
b) Illustrate about matrix powers and products.	8 M